麦克斯韦方程组表达式(积分和微分)及物理意义(麦克斯韦方程组表达式)

摘要 大家好,我是小典,我来为大家解答以上问题。麦克斯韦方程组表达式(积分和微分)及物理意义,麦克斯韦方程组表达式很多人还不知道,现在让我...

大家好,我是小典,我来为大家解答以上问题。麦克斯韦方程组表达式(积分和微分)及物理意义,麦克斯韦方程组表达式很多人还不知道,现在让我们一起来看看吧!

1、麦克斯韦方程组的积分形式如下:

2、这是1873年前后,麦克斯韦提出的表述电磁场普遍规律的四个方程。其中:

3、(1)描述了电场的性质。在一般情况下,电场可以是自由电荷的电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。

4、(2)描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。

5、(3)描述了变化的磁场激发电场的规律。

6、(4)描述了传导电流和变化的电场激发磁场的规律。

7、稳恒场中的形式

8、当

9、时,方程组就还原为静电场和稳恒磁场的方程:

10、无场源自由空间中的形式

11、当 ,方程组就成为如下形式:

12、麦克斯韦方程组的积分形式反映了空间某区域的电磁场量(D、E、B、H)和场源(电荷q、电流I)之间的关系。 在电磁场的实际应用中,经常要知道空间逐点的电磁场量和电荷、电流之间的关系。从数学形式上,就是将麦克斯韦方程组的积分形式化为微分形式。

13、注意:

14、(1)在不同的惯性参照系中,麦克斯韦方程组有同样的形式。

15、(2) 应用麦克斯韦方程组解决实际问题,还要考虑介质对电磁场的影响。例如在均匀各向同性介质中,电磁场量与介质特性量有下列关系:

16、在非均匀介质中,还要考虑电磁场量在界面上的边值关系。在利用t=0时场量的初值条件,原则上可以求出任一时刻空间任一点的电磁场,即E(x,y,z,t)和B(x,y,z,t)。 对于正弦时变场,可以使用复矢量将电磁场定律表示为复数形式。

17、在复数形式的电磁场定律中,由于复数场量和源量都只是空间位置的函数,在求解时,不必再考虑它们与时间的依赖关系。因此,对讨论正弦时变场来说面采用复数形式的电磁场定律是较为方便的。 采用不同的单位制,麦克斯韦方程组的形式会稍微有所改变,大致形式仍旧相同,只是不同的常数会出现在方程内部不同位置。

18、国际单位制是最常使用的单位制,整个工程学领域都采用这种单位制,大多数化学家也都使用这种单位制,大学物理教科书几乎都采用这种单位制。其它常用的单位制有高斯单位制、洛伦兹-赫维赛德单位制(Lorentz-Heaviside units)和普朗克单位制。由厘米-克-秒制衍生的高斯单位制,比较适合于教学用途,能够使得方程看起来更简单、更易懂。洛伦兹-赫维赛德单位制也是衍生于厘米-克-秒制,主要用于粒子物理学;普朗克单位制是一种自然单位制,其单位都是根据自然的性质定义,不是由人为设定。普朗克单位制是研究理论物理学非常有用的工具,能够给出很大的启示。在本页里,除非特别说明,所有方程都采用国际单位制。

19、这里展示出麦克斯韦方程组的两种等价表述。第一种表述如下:

20、这种表述将自由电荷和束缚电荷总和为高斯定律所需要的总电荷,又将自由电流、束缚电流和电极化电流总合为麦克斯韦-安培定律内的总电流。这种表述采用比较基础、微观的观点。这种表述可以应用于计算在真空里有限源电荷与源电流所产生的电场与磁场。但是,对于物质内部超多的电子与原子核,实际而言,无法一一纳入计算。事实上,经典电磁学也不需要这么精确的答案。

21、第二种表述见前所述”积分形式“中的”一般形式“。它以自由电荷和自由电流为源头,而不直接计算出现于电介质的束缚电荷和出现于磁化物质的束缚电流和电极化电流所给出的贡献。由于在一般实际状况,能够直接控制的参数是自由电荷和自由电流,而束缚电荷、束缚电流和电极化电流是物质经过极化后产生的现象,采用这种表述会使得在介电质或磁化物质内各种物理计算更加简易。

22、表面上看,麦克斯韦方程组似乎是超定的(overdetermined)方程组,它只有六个未知量(矢量电场、磁场各拥有三个未知量,电流与电荷不是未知量,而是自由设定并符合电荷守恒的物理量),但却有八个方程(两个高斯定律共有两个方程,法拉第定律与安培定律是矢量式,各含有三个方程)。这状况与麦克斯韦方程组的某种有限重复性有关。从理论可以推导出,任何满足法拉第定律与安培定律的系统必定满足两个高斯定律。

23、另一方面,麦克斯韦方程组又是不封闭的。只有给定了电磁介质的特性,此方程组才能得到定解。

24、麦克斯韦方程组乃是由四个方程共同组成的: 高斯定律:该定律描述电场与空间中电荷分布的关系。电场线开始于正电荷,终止于负电荷。计算穿过某给定闭曲面的电场线数量,即其电通量,可以得知包含在这闭曲面内的总电荷。更详细地说,这定律描述穿过任意闭曲面的电通量与这闭曲面内的电荷之间的关系。 高斯磁定律:该定律表明,磁单极子实际上并不存在。所以,没有孤立磁荷,磁场线没有初始点,也没有终止点。磁场线会形成循环或延伸至无穷远。换句话说,进入任何区域的磁场线,必需从那区域离开。以术语来说,通过任意闭曲面的磁通量等于零,或者,磁场是一个无源场。 法拉第感应定律:该定律描述时变磁场怎样感应出电场。电磁感应是制造许多发电机的理论基础。例如,一块旋转的条形磁铁会产生时变磁场,这又接下来会生成电场,使得邻近的闭合电路因而感应出电流。 麦克斯韦-安培定律:该定律阐明,磁场可以用两种方法生成:一种是靠传导电流(原本的安培定律),另一种是靠时变电场,或称位移电流(麦克斯韦修正项)。 在电磁学里,麦克斯韦修正项意味着时变电场可以生成磁场,而由于法拉第感应定律,时变磁场又可以生成电场。这样,两个方程在理论上允许自我维持的电磁波传播于空间。

本文到此讲解完毕了,希望对大家有帮助。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时候联系我们修改或删除,多谢。