勾股定理常用11个公式(勾股定理谁发现的)

摘要 大家好,我是小典,我来为大家解答以上问题。勾股定理常用11个公式,勾股定理谁发现的很多人还不知道,现在让我们一起来看看吧!最早发现"...

大家好,我是小典,我来为大家解答以上问题。勾股定理常用11个公式,勾股定理谁发现的很多人还不知道,现在让我们一起来看看吧!

最早发现"勾三股四弦五"这一特殊关系的是古埃及人,这一事实可以追溯到公元前25世纪,中国古代数学家也较早独立发现并证明过勾股定理,而对它的应用更有许多独到之处。勾股定理一般情况的发现和证明,那要归功于古希腊的毕达哥拉斯。这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"。

拓展:

1. 美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。

公元前十一世纪,我国周朝数学家商高就提出“勾三、股四、弦五”。勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为“勾股定理”,也有人称“商高定理”。

在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。因而西方人都习惯地称这个定理为“毕达哥拉斯定理”。

2. 勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

3. 勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

本文到此讲解完毕了,希望对大家有帮助。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时候联系我们修改或删除,多谢。