刺激区别(刺激的关系)
大家好,我是小典,我来为大家解答以上问题。刺激区别,刺激的关系很多人还不知道,现在让我们一起来看看吧!
刺激强度与感觉大小的关系定律:
1、韦伯定律
德国生理学家韦伯曾系统研究了触觉的差别感觉阈限。他让被试用手先后提起两个重量不大的物体,并判断哪个重些。用这种方法确定了刚刚能够引起差别感觉的最小刺激量。结果发现,对刺激物的差别感觉不依赖于一个刺激物增加的绝对重量,而依赖于刺激物的增量与原刺激量的比值。比方说,如果手上原有的重量是200克,那么必须至少增加6克,人们才能感觉到两个重量(即200克与206克)的差别;如果原有的重量是300克,那么增加的重量应该是10克。可见,引起差别感觉的刺激的增量与原刺激量之间存在着某种关系。这种关系可用以下公式来表示:
K=△I/I
其中,I为标准刺激的强度或原刺激量,△I为引起差别感觉的刺激增量。K为一个常数,它随着被测量的感觉系统的不同而变化。这个公式叫韦伯定律。对不同的感觉来说,K的数值不相同,即韦伯分数不同。
根据韦伯分数的大小,我们可以判断某种感觉的敏锐程度。韦伯分数越小,感觉越敏锐。韦伯定律虽然揭示了感觉的某些规律,但它只适用于刺激的中等强度。换句话说,只有使用中等强度的刺激,韦伯分数才是一个常数。
2、对数定律
1860年,德国心理物理学家费希纳在韦伯研究的基础上,进一步探讨了刺激强度与感觉强度的关系。他认为最小可觉差在主观上都相等。因此,任何感觉的大小都可由在阈限上增加的最小可觉差来决定。根据这个假定,费希纳在感觉大小和刺激强度之间推导出一种数学关系式:
P=KlgI
这就是费希纳的对数定律。其中,I指刺激量,P指感觉量,K是一个常数,它与某种感觉的韦伯分数有关。按照这个公式,感觉的大小(或感觉量)是刺激强度(或刺激量)的对数函数。当刺激强度按几何级数增加时,感觉强度只按算术级数上升。
费希纳定律提供了度量感觉大小的一个量表,对许多实践部门有重要意义。但他假定所有最小可觉差在主观上都相等,已经为事实所否定。费希纳定律以韦伯定律作为基础,由于韦伯定律只适用于中等强度的刺激,因此,费希纳定律也只有在中等强度的刺激时才适用。
3、幂定律
20世纪50年代,美国心理学家斯蒂文斯用数量估计法研究了根据这些实验,斯蒂文斯认为,心理量并不随物理量对数的上升而上升,而是与物理量的幂成正比。这种关系可用数学式表示为:
P=KIn
公式中的P是指知觉到的大小或感觉大小,Ⅰ是指刺激的物理量,K和n是被评定的某类经验的常定特征。这就是斯蒂文斯的幂定律。总之,对能量分布较大的感觉通道(如视觉、听觉)来说,幂函数的指数较低,因而感觉量随着物理量的增长而缓慢上升;而对能量分布较小的感觉通道(如温度觉和压觉)来说,幂函数的指数较高,因而物理量变化的效果更明显。
斯蒂文斯的幂定律同样具有理论和实践的意义。在理论上,它说明对刺激大小的主观尺度可以根据刺激的物理强度的乘方来标定。在实践上,它可以为某些工程计算提供依据。但是,用数量估计法所得到的幂定律依赖于被试正确使用数字来恰当标记其心理感觉量,因此可能受到被试反应偏向的影响。
本文到此讲解完毕了,希望对大家有帮助。
郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时候联系我们修改或删除,多谢。